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Abstract - Analytic expressions for the magnetic induction and

its spatial derivatives for a circular loop carrying a static current
are presented in Cartesian, spherical and cylindrical coordinates.
The solutions are exact throughout all space outside the
conductor.

Index Terms - Circular Current Loop, Magnetic Field, Spatial

Derivatives.

I. INTRODUCTION

nalytic expressions for the magnetic induction (magneticflux density, B) of a simple planar circular current loop

have been published in Cartesian and cylindrical coordinates

[1,2], and are also known implicitly in spherical coordinates

[3]. In this paper, we present explicit analytic expressions for
B and its spatial derivatives in Cartesian, cylindrical and

spherical coordinates for a filamentary current loop. These
results were obtained with extensive use of Mathematica TM

and are exact throughout all space outside of the conductor.

The field expressions reduce to the well-known limiting cases
and satisfy V •B = 0 and V × B = 0 outside the conductor.

These results are general and applicable to any model using
filamentary circular current loops. Solenoids of arbitrary size

may be easily modeled by approximating the total magnetic

induction as the sum of those for the individual loops [4]. The

inclusion of the spatial derivatives expands their utility to
magnetohydrodynamics where the derivatives are required.

The equations can be coded into any high-level

programming language. It is necessary to numerically evaluate
complete elliptic integrals of the first and second kind, but this

capability is now available with most programming packages.

II. SPHERICAL COORDINATES

We start with spherical coordinates because this is the

system usually used in the standard texts. The Cartesian and
cylindrical results in Sections III and IV were derived from the

spherical coordinate results.

The current loop has radius a, is located in the x-y plane,
centered at the origin, and carries a current / which is positive
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as shown (Fig. I.). It is assumed that the cross section of the
conductor is negligible.
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Fig. 1. Circular current loop geometry.

The vector potential, A, of the loop is given by [3]:

12oi a [2_ cos_' d_o'

A_r,O) = --_-x .lo _[a2 + r 2_ 2arsin Ocos_o"

_ ta,, 41a [(2-k2)K(k2)-2E(k2)]

4x 4a 2 + r 2+ 2arsinO [ k2 ]'

(l)

where r, 0, and _ are the usual spherical coordinates, and the

argument of the elliptic integrals is

k2 _ 4arsinO (2)

a 2 +r 2 +2arsinO

Note that we use k2for the argument of the elliptic integrals.

This choice is consistent with the convention of Abramowitz

and Stegun [5] where m = k 2.

For a static field with constant current, the B components in

spherical coordinates are [3]:

l 3
Br - rsin0 _)O(sinOA_) (3)

Bo = _r__r(r A_ ) (4)

Be = 0. (5)

Analytic expression for the field components and their
derivatives in spherical coordinates are given below. For

simplicity we use the following substitutions:

a,2 -=a 2+r 2 -2arsinO,fl 2 -a 2 +r 2 +2arsinO ,k 2=-I-aZ/fl 2, and

C =-izo I/x.



Field Components:

Ca2 cosO E(k 2 )
B r = a2fl

_ C [,2

Bo 2azfl-sinO [r +aZ c°s20)E(k2 )-aZK(k 2 )]

Spatial Derivatives of the Field Components:

OB r _ Ca2 cos8 {[a 4_7r4_6a2r "_cos 20]E(k 2)+
Or 2ra 4fl 3
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III. CARTESIAN COORDINATES

(6)

(7)

(8)

(9)

(1o)

(11)

The field components and their derivatives in Cartesian

coordinates are given below. These are easier to use when

rotations or translations are needed and obviate the need to

transform the basis vectors. The following substitutions are

used for simplicity: p2 =_x2 +y2 r 2 _x2+y2 +Z2 '

a-' =-a2 +r2-2ap,fl -' - a2 +r2 + 2ap ,k 2 =-l-a-'/fl 2 , 7---x 2 _ y2

and C =-/_, 1/_. Note that p and r are non-negative.

Field Components:

Cxz _a 2+r 2)E(k 2)_a 2K(k?)]

B._ = 2a-'tip 2
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" 2a2flp 2 x

C _ --r 28_=7_._b- )_2.o: _-' ,1

Spatial Derivatives of the Field

Components:
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IV. CYLINDRICAL COORDINATES

The following substitutions are used for simplicity:

a2=_aZ+pZ+z-__ap,fl-=_a'-+p2+ze+2ap,k2 l-a2/fl -', C=_,uul/,,r

Field Components:

_ C z _a 2+p2 + z 2)E(k2)_a2K(k2)] (24)
B ,, 2a2 flp

2_[ *_p2
B: = a- -z-)E(k2)+a2K(k2)] (25)

Spatial Derivatives of the Field Components:
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2p2a4fl 3
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Op 3z
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V. LIMITING CASES

Several special limiting cases are given for completeness.

We have confirmed that our results given above do indeed
converge to these formulas. We also give additional

expressions for B x and B v near the axis that may prove

useful.

Along the axis of the loop:

B. - ,uol a 2 (30)

2(a 2 + z"

Near the axis of the loop (x,y<<a):

B._ - 3a2p°Ixz (31)
4(a 2 + Z 2 )'_'_2

3a -kq)lyz (32)

Far from the loop (r>>a):

= __ cos 0
Br bt° (Ilra2 ) 3

2_r r

(33)

Bo = llO (llfij 2 ) sin 0
4_r r 3

(34)

Vl. CONCLUSION

We have presented simple, closed-form algebraic formulas
for the magnetic induction and its spatial derivatives of a

filamentary current loop that are exact everywhere in space

outside the conductor. Although these formulas are exact, they

do require the numerical evaluation of elliptic integrals.
Solenoids with circular cross sections of arbitrary size and

configuration can be modeled by simply summing the

contributions of each individual loop.
There are, of course, other ways to obtain B for the basic

circular current loop. For example, series expansions are

available [3] and numerical integration via a finite element

approach can be performed [6]. However, these suffer from
limitations such as truncating the series expansions after some

tolerance is reached or accepting some graininess when using a

discrete grid. Our approach has neither of these limitations and

yields results are that exact up to the limitations of the
numerical arithmetic and the elliptic integral routines.

The inclusion of the spatial derivatives allows convective

derivatives to be found exactly and may prove useful for

magnetohydrodynamics applications.
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